

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologna

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

BOLOGNA BOLOGNA, ROYAL HOTEL CARLTON

New Drugs in Hematology Session VIII CML January 15-17, 2024, Bologna, Italy

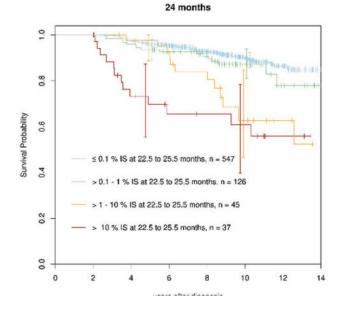
Chronic myeloid leukemia: asciminib

Dr Delphine Rea, MD, PhD

Département Médico-Universitaire d'Hématologie et Immunologie

Hôpital Saint-Louis, Paris, France

Disclosures of Dr Delphine REA


Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis			X			X	X
Incyte							X
Pfizer							X
Terns			X			X	

Improved survival in CML with ATP-competitive TKIs

Problems with ATP-competitive TKIs

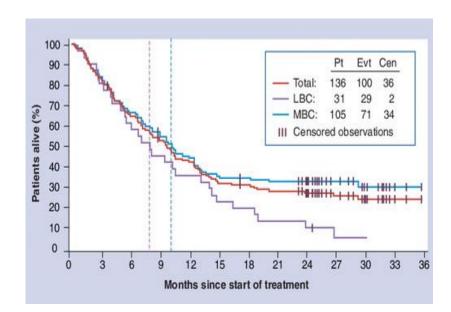
1. Survival inferiority if resistance

OS in patients failing optimal/warning milestones at 24 months: 55% at 10 years

Lauseker M, et al. Leukemia 2023; 37: 2231-2236. Wilson LJ, et al. Cancer Res 2017; 78(1): 15-29. Larson RA, et al. Leukemia 2012; 26: 2197-2203.

2. Survival inferiority if progression

3. Drug-related adverse: morbidity and reduced QoL

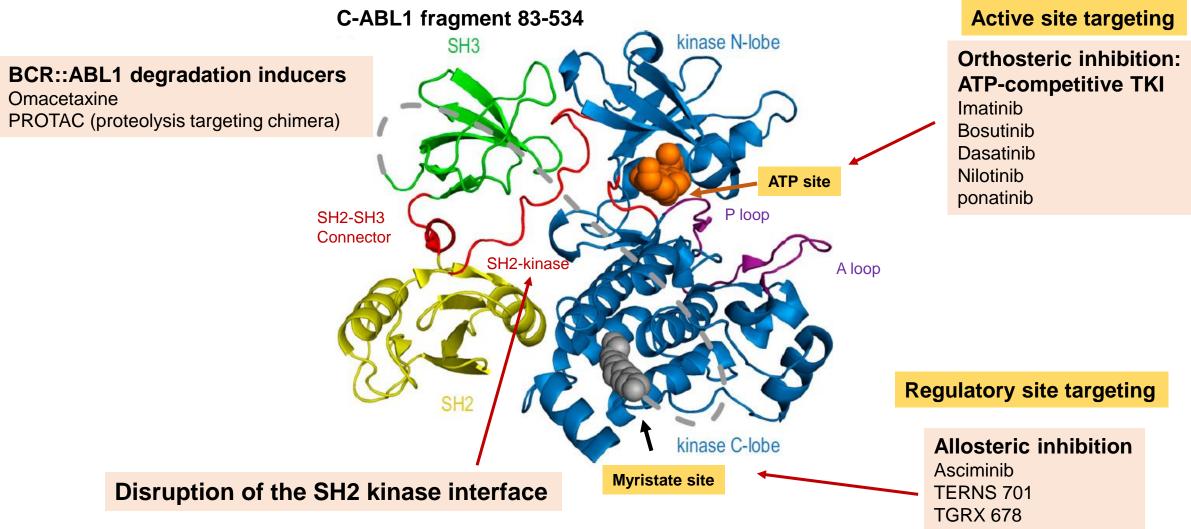

Dasatinib

Ponatinib

Nilotinib

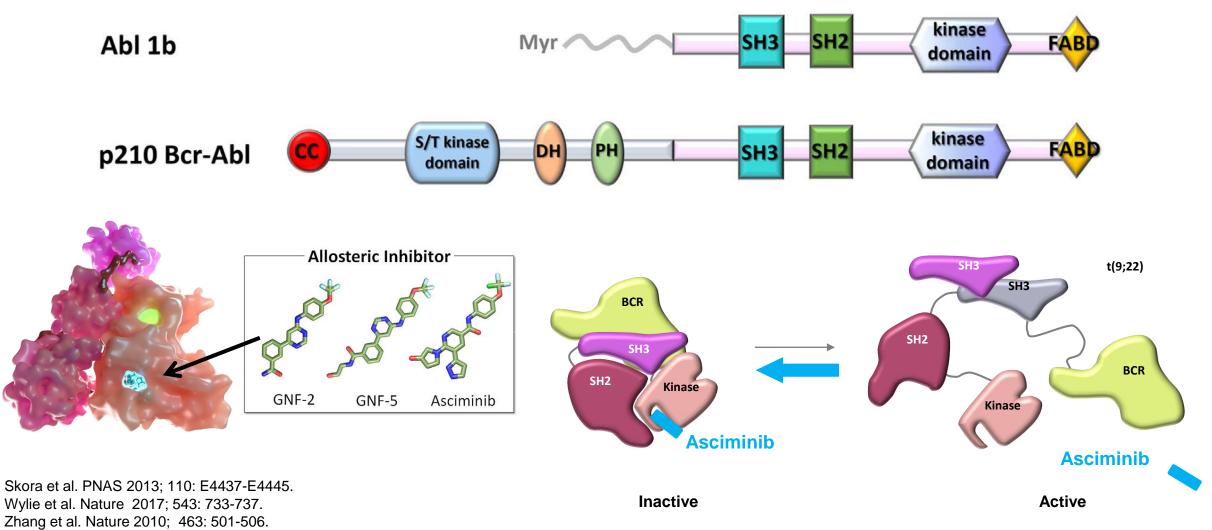
Imatinib

Bosutinib



Median survival: 10.5 months

Highly conserved structures of ATP sites: poor selectivity

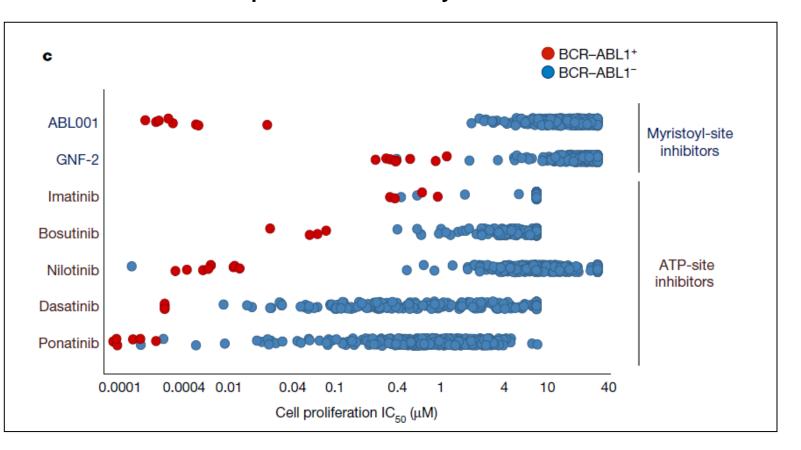

4. Functional cure only for a minority

Approaches to inhibiting BCR::ABL1 An expanding treatment landscape

Grebien F, et al.Cell 2011; 147: 306-319.

Asciminib: mechanism of action

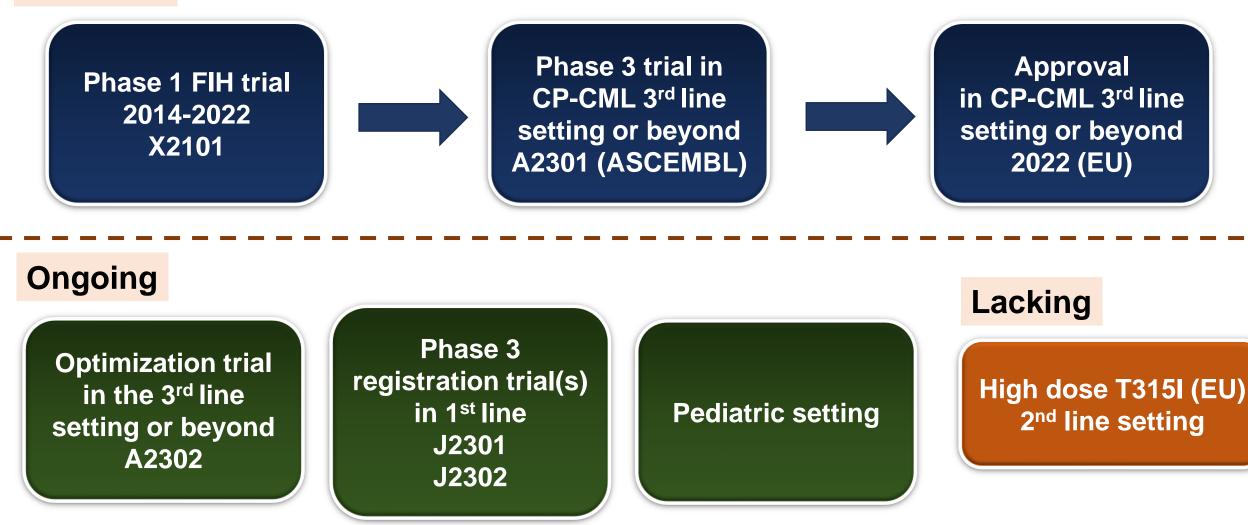
Liu Y, et al. Computational and Structural Biotechnology Journal 20 (2022) 4257–4270 Nussinov R, et al. Journal of Molecular Biology 2022; 434(17):167569.


Asciminib allosterically inhibits BCR::ABL1 kinase activity

Potency and selectivity of asciminib in vitro

Activity of ABL001 in biochemical assays

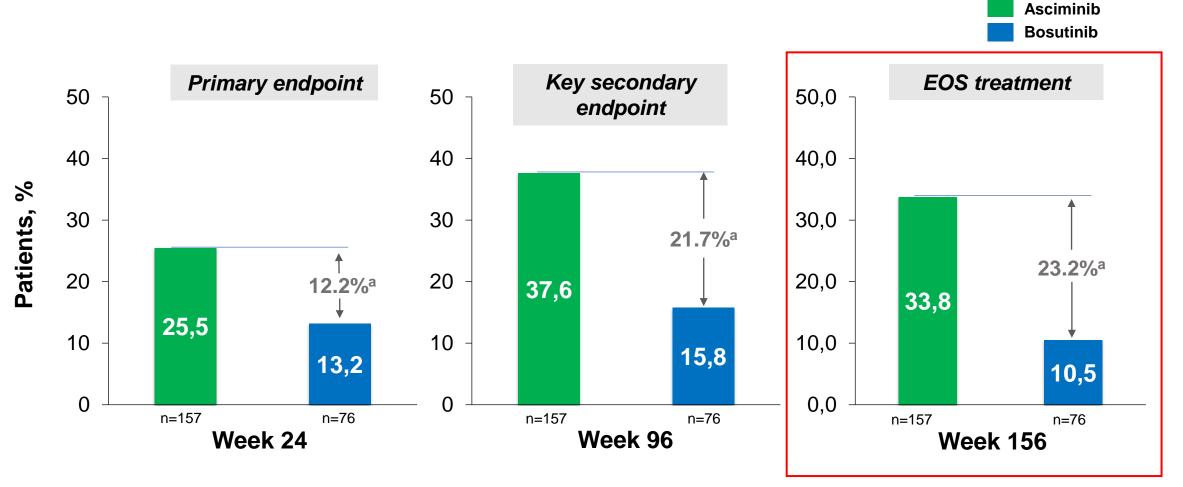
Kinase assay	IC50 (mM)
ABL1	0.00045
ALK	>10
BTK	>10
FGFR1-R4	>10
FLT3	>10
JAK1-2	>10
KIT	>10
LCK	>10
LYN	>10
PDGFRA	>10
SRC	>10
ZAP70	>10


Anti-proliferative activity in vitro

Adapted from: Wylie et al. Nature 2017; 543: 733-737.

Development of single agent asciminib in humans

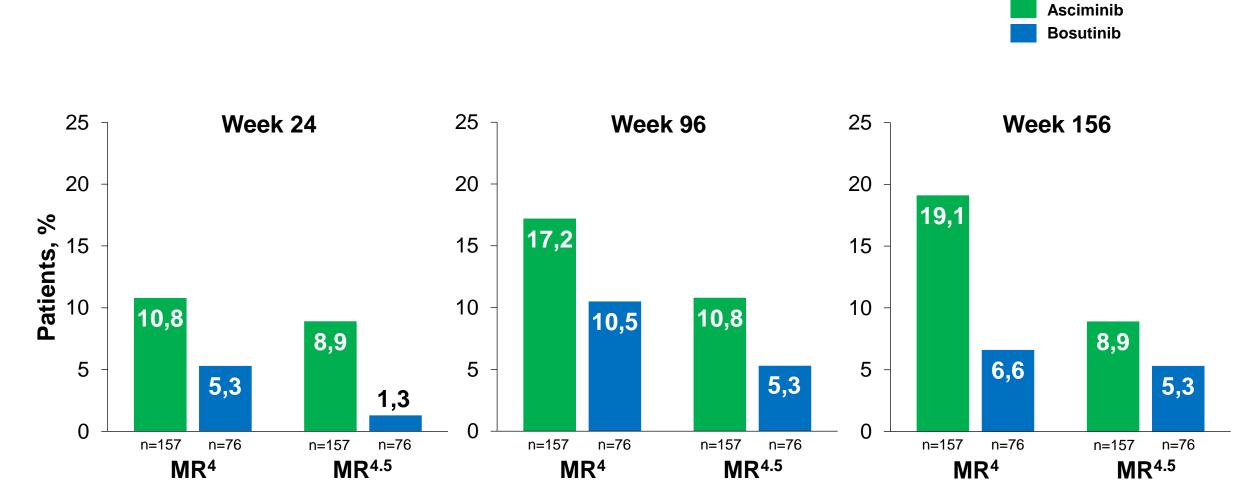
Achieved



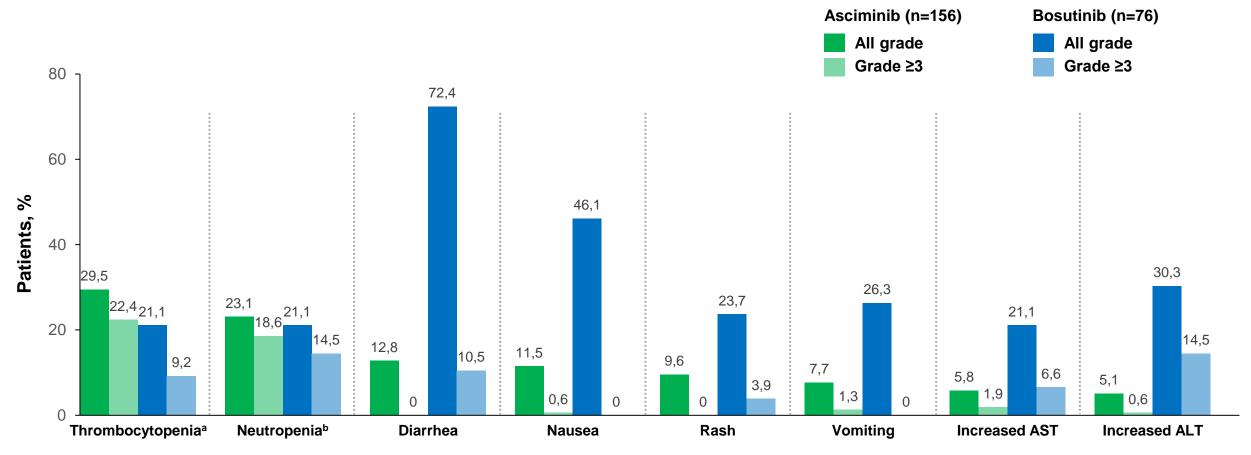
Asciminib: recommended doses and pharmacology

	Asciminib	
Dose range during FIH study	10mg QD to 200mg BID	
DLT, MTD	None	
Year of 1 st approval	2021 USA, 2022 Europe	
Approved dose 3 rd line non-T315I	40mg BID (80mg QD under evaluation)	
Approved dose T315I (USA only)	200mg BID	
Absorption	Max within 2h post dose, 33% to 57%	
\uparrow by fatty food (800-1000kcal, 50% lipids taken within 30 min)	Yes	
↓ by ↑ gastric pH	Νο	
Half life	11.7 h	
Main metabolizing enzyme	UGT 2B7, CYP3A4	
Elimination	Biliary fecal route	
Hepatic or renal impairment	No effect	

Hughes T, et al. NEJM 2019; 381: 2315-2326. Hoch M, et al. J Clin Pharma 2021; 6(11): 1454-1465. Hoch M, et al. Clin Pharmacol Drug Dev 2021; 11(2): 207-219. Tran P, et al. Xenobiotica 2019; 50:2: 160-179.


ASCEMBL TRIAL MMR Rates at Weeks 24, 96, and 156

^a The treatment difference after adjusting for the baseline MCyR status, was 12.2% (95% CI, 2.19%-22.3%; 2-sided *P*=0.029) at Week 24, 21.74% (95% CI, 10.53%-32.95%; two-sided *P*=0.001) at Week 96, and 23.16% (95% CI: 13.14, 33.18; 2-sided *P*<0.001) at Week 156.


Mauro MJ, et al. ASH 2023. Poster 4536.

ASCEMBL TRIAL MR⁴ and MR^{4.5} Rates at Weeks 24, 96, and 156

Mauro MJ, et al. ASH 2023. Poster 4536.

ASCEMBL TRIAL Most Frequent AEs By the End of Study Treatment Cutoff (in ≥20% of Patients in Any Treatment Arm)

^a Includes thrombocytopenia and platelet count decreased.

^b Includes neutropenia and neutrophil count decreased.

ASCEMBL TRIAL Mutations at Baseline and Best Response by End Of Study (W156)

	Asciminib 40 mg twice daily					
Mutation at baseline ^a	All patients, n	Best response ^e	Discontinued treatment	Mutations at end of study treatment		
Patients with any mutation	17		17	9		
G250E ^b	1	MMR or better	Yes	None detected		
G250E-	1	MMR or better	Yes	None detected		
Vocallh	1	<i>BCR::ABL1</i> ^{IS} >10%	Yes	Y253H		
Y253H ^b	1	MMR or better	Yes	None detected		
E255K ^b	1	MMR or better	Yes	None detected		
E200K	1	MMR or better	Yes	None detected		
E255V ^b	1	MMR or better	Yes	None detected		
F317L ^b	1	<i>BCR::ABL1</i> ^{IS} >1% to ≤10%	Yes	E355G ^t		
	1	BCR::ABL1 ^{IS} >10%	Yes	F317L		
F359C ^b	1	BCR::ABL1 ^{IS} >10%	Yes	F359C		
F359V ^b	1	BCR::ABL1 ^{IS} >1% to ≤10%	Yes	F359V		
10001	2	BCR::ABL1 ^{IS} >10%	Yes	F359V		
E459K ^c	1	BCR::ABL1 ^{IS} >10%	Yes	None detected		
W478R ^d	1	MMR or better	Yes	None detected		
L248V/F317L ^b	1	<i>BCR::ABL1</i> ^{IS} >0⋅1% to ≤1%	Yes	F317L		
Y253H ^b /F486S ^d	1	<i>BCR::ABL1</i> ^{IS} >10%	Yes	M244V ^g		
M244V ^b	_	_	_	_		
Q252Hb	_	-	_	_		
F359I ^b	_	-	_	-		
R473Q ^d	_	_	_	_		

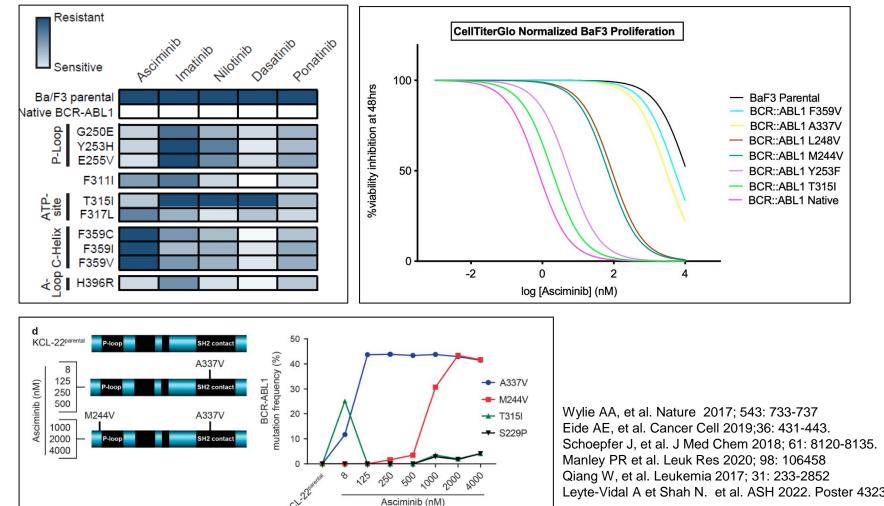
Mauro MJ, et al. ASH 2023. Poster 4536.

ASCEMBL: BCR::ABL1 mutations^a at study discontinuation

Patients discontinuing asciminib due to lack of efficacy or disease progression				
n (%)	Asciminib 40 mg twice daily (n=39)			
No mutations detected at end of treatment	22 (56.4)			
Missing assessments at end of treatment	1 (2.6)			
Mutations detected at end of treatment	16 (41.0)			
Newly emerging mutations at end of treatment	10 (25.6)			
ATP-binding site	 M244V (n=3)^b E355G (n=1)^c F359V (n=1) T315I (n=1) 			
Myristoyl pocket	 A337T (n=3) P465S (n=1) 			
Mutations at baseline and end of treatment	6 (15.4)			
ATP-binding site	 F317L (n=2) F359C/V (n=3) Y253H (n=1) 			

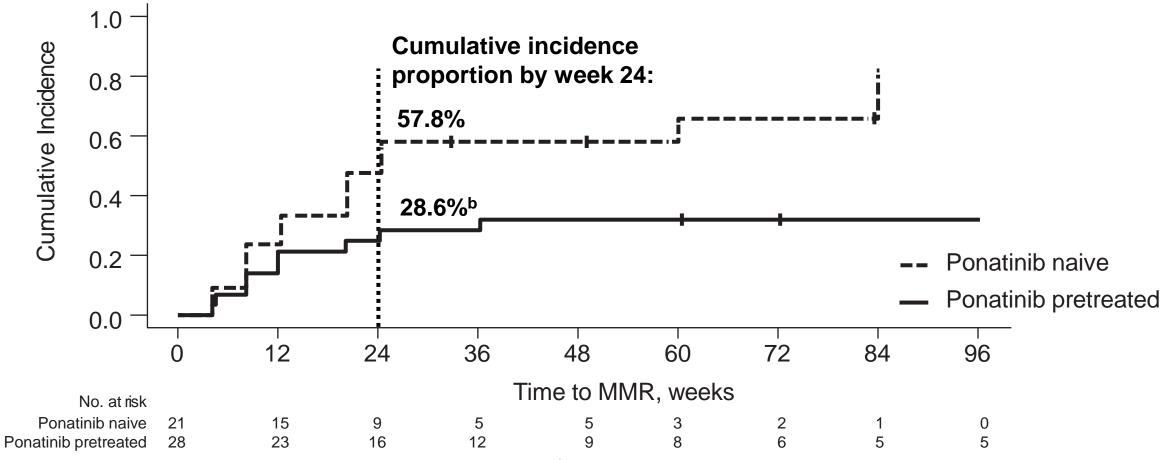
- -

^a Determined by Sanger sequencing, mutation analysis was performed on week 1 day 1 and at the end of treatment. In case mutations were detected on week 1 day 1, additional assessments were performed every 12 weeks during the study.


^b 1 patient had Y253H and F486S mutations at baseline that were not detected at the time of discontinuation.

^c Patient had the F317L mutation at baseline, which was not detected at the time of discontinuation.

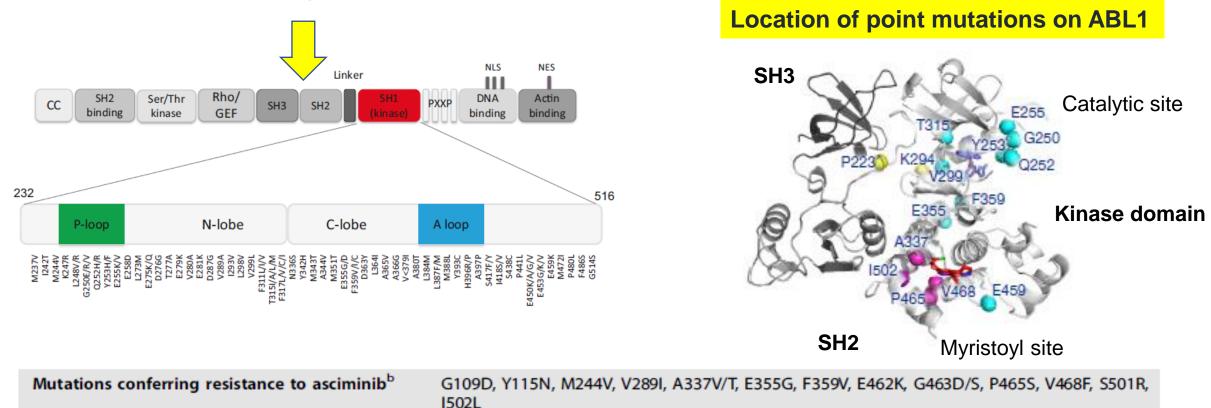
Rea D, et al. EHA 2022. Oral presentation: (EHA) 4005


Asciminib in case of ABL1 point mutations

	Asciminib			
BCR::ABL1	Growth inhibition of BCR-ABL1 transfected Luc-Ba/F3 cells (mean IC ₅₀ value nM ± SD)			
wild-type	0.61 ± 0.21			
G250H	0.74 ± 0.27			
E255V	1.17 ± 0.54			
Y253H	1.71 ± 0.75			
E255K	2.35 ± 0.71			
E459K	3.01 ± 1.37			
V299L	6.12 ± 4.21			
T315I	7.64 ± 3.22			
E355G	9.33 ± 2.14			
Q252H	10.9 ± 3.53			
F359V	11.5 ± 4.87			
P223S	15.0 ± 5.74			
K294E	18.2 ± 9.80			
I502L	30.2 ± 10.3			
V468F	322 ± 83			
P465S	369 ± 119			
A337V	453 ± 70			

10

Asciminib at 200mg BID in T315I (CABL001X2101): MMR in Ponatinib-Naive and Ponatinib-Pretreated Patients^a



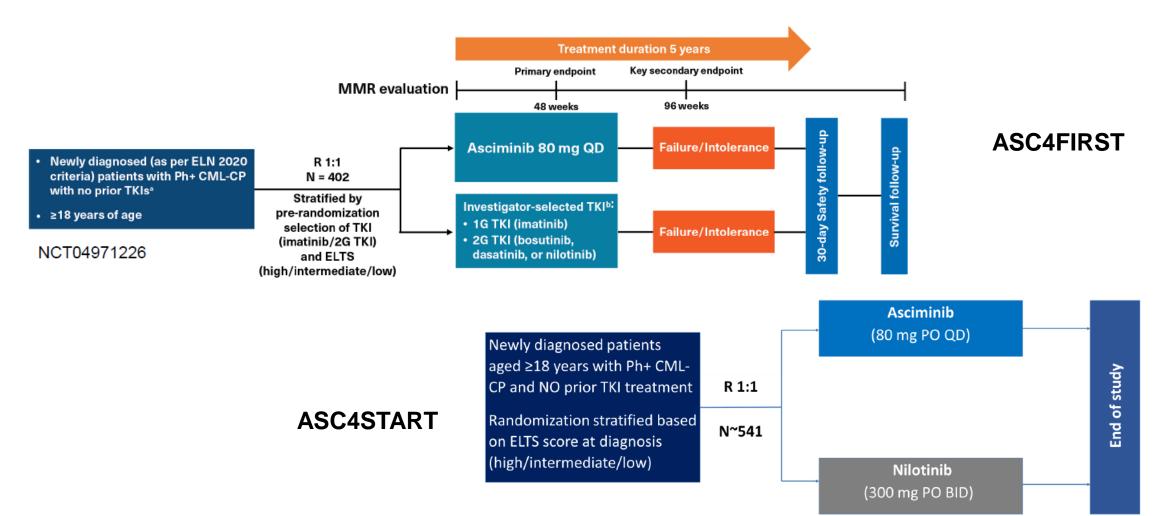
^a Discontinuations and deaths treated as competing risks. ^b Includes 5 patients who showed signs of resistance to ponatinib prior to study entry.

Cortes JE, et al. Blood (ASH) 2020: abstract 650

New ELN laboratory recommendations

ABL1 Mutation testing

- 1. Targeted NGS recommended in case of failure or warning or relapse
- 2. Sanger acceptable
- 3. dPCR not recommended unless ruling out specific mutations of interest before very rapid TKI switch
- 4. Some asciminib-resistant mutations are located outside the TKD (e.g. P223S, G109D, Y115N)


Cross NCP, et al. Leukemia 2023; 37: 2150-2167.

TKI approval in CML in 2024

Line	ATP-competitive					Allosteric
	1 st generation	2 nd generation			3 rd generation	
	Imatinib	Bosutinib	Dasatinib	Nilotinib	Ponatinib	Asciminib
1 st line	Х	Х	Х	Х		Trials in progress
2 nd line		Х	Х	Х	Х	
3 rd line and beyond		Х	Х	Х	Х	Х

Hochhaus A, et al. Leukemia 2020; 34: 966-984. NCCN Guidelines. Chronic Myeloid Leukemia. V1.2023.

Asciminib 1st line in CP-CML ASC4FIRST and ASC4START

Treatment duration 2–4.5 years

Take home messages

- Asciminib is the first allosteric BCR::ABL1 inhibitor approved for use to fight CML
- Its efficacy and tolerance profile in the ≥3rd line salvage context is highly favorable despite few weaknesses against some ABL1 KD point mutation that may be overcome in part by high dose asciminib like T315I
- Unlike 2nd or 3rd generation ATP-competitive TKIs, older age or comorbid conditions may not limit asciminib use
- Asciminib may replace ATP-competitive TKIs upfront in case a better clinical benefit emerges in 1st line studies